Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Article | IMSEAR | ID: sea-184075

ABSTRACT

Haemorrhagic Septicaemia is one of the most common, fatal and acute bacterial diseases of livestock which causes mortality above 70% and is caused by Pasteurella multocida. The only satisfactory and practical method of control and prevention is timely vaccination of all the healthy and in contact animals. Different types of vaccines are being used for the immunity against this disease. In this project three oil based vaccines were produced. Two single emulsion vaccines were prepared by utilizing Montanide ISA-50 and liquid paraffin with lanolin where as one double emulsion with the help of Montanide ISA-206 was prepared. In house quality control testing and safety testing was performed on swiss albino mice. For immune titre IHA was performed by collecting serum from each and every animal including control animals. The comparison of IHA was done via statistical analysis by using GMT, Single emulsion vaccine prepared from liquid paraffin with lanolin gave maximum immune titre out of all the three vaccines in large animals and in young calves ISA 206 gave a significant titre.

2.
Article in English | IMSEAR | ID: sea-163043

ABSTRACT

Aims: Glucose oxidase is an enzyme with large scale applications in various industries. It is also used in several diagnostic kits which makes it medically important as well. Our aim was to isolate indigenous glucose oxidase hyper producing strain of Aspergillus niger from different soil samples of Punjab, Pakistan. Study Design: An experimental study. Place and Duration of Study: Institute of Industrial Biotechnology, GC University, Lahore from March 2011 to July 2012. Methodology: Two hundred and seventy nine fungal strains were isolated from soil of different localities of Punjab. Isolates were screened for glucose oxidase production using submerged fermentation. Glucose oxidase hyper producer isolate was identified using morphological and molecular techniques i.e. 18S rDNA. DNA was isolated and amplified using PCR. Gene sequencing was done and homology analysis was studied. Rate of glucose oxidase production was also analysed. Results: Glucose oxidase hyper producing isolate was identified as A. niger A247 strain. This strain gave best reproducible results (145.22 ±0.034 U/g of cell mass) after 72 hrs of fermentation at 30ºC and at a medium pH of 7.2. Conclusion: Our results indicate the natural ability of A. niger to produce Glucose oxidase in large quantity instead of using genetic manipulation techniques.


Subject(s)
Aspergillus niger/chemistry , Aspergillus niger/isolation & purification , DNA/isolation & purification , Glucose Oxidase/biosynthesis , Pakistan , Polymerase Chain Reaction , Soil/microbiology , Soil Microbiology
3.
Braz. j. microbiol ; 43(1): 78-88, Jan.-Mar. 2012. ilus, tab
Article in English | LILACS | ID: lil-622792

ABSTRACT

The purpose of the current study was intended to obtain the enhanced production of bacitracin by Bacillus licheniformis through random mutagenesis and optimization of various parameters. Several isolates of Bacillus licheniformis were isolated from local habitat and isolate designated as GP-35 produced maximum bacitracin production (14±0.72 IU ml-1). Bacitracin production of Bacillus licheniformis GP-35 was increased to 23±0.69 IU ml-1 after treatment with ultraviolet (UV) radiations. Similarly, treatment of vegetative cells of GP-35 with chemicals like N-methyl N'-nitro N-nitroso guanidine (MNNG) and Nitrous acid (HNO2) increased the bacitracin production to a level of 31±1.35 IU ml-1 and 27±0.89 IU ml-1 respectively. Treatment of isolate GP-35 with combined effect of UV and chemical treatment yield significantly higher titers of bacitracin with maximum bacitracin production of 41.6±0.92 IU ml-1. Production of bacitracin was further enhanced (59.1±1.35 IU ml-1) by optimization of different parameters like phosphate sources, organic acids as well as temperature and pH. An increase of 4.22 fold in the production of bacitracin after mutagenesis and optimization of various parameters was achieved in comparison to wild type. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably Yp/s (IU/g substrate), Yp/x (IU/g cells), Yx/s (g/g), Yp/s, mutant strain B. licheniformis UV-MN-HN-6 was found to be a hyperproducer of bacitracin.


Subject(s)
Bacillus/isolation & purification , Bacitracin/isolation & purification , Chemical Compounds/analysis , Mutagenesis , Mutagens/analysis , Mutagens/isolation & purification , Kinetics , Methods , Process Optimization , Reference Standards , Radiation
4.
Braz. j. microbiol ; 41(4): 1124-1132, Oct.-Dec. 2010. graf, tab
Article in English | LILACS | ID: lil-595756

ABSTRACT

The present investigation deals with the kinetics of submerged extracellular lipases fermentation by both wild and mutant strains of Rhizopus oligosporus var. microsporus in a laboratory scale stirred fermentor. Other parameters studied were inoculum size, pH, agitation and rate of aeration. It was found that the growth and lipases production was increased gradually and reached its maximum 9.07± 0.42ª U mL-1 (W) and 42.49 ± 3.91ª U mL-1 (M) after 30h of fermentation for both wild and mutant strain. There is overall increase of 109 percent (W) and 124 percent (M) in the production of extracellular lipases as compared to shake flask. Another significant finding of the present study is that the fermentation period is reduced to 30 h in case of wild and 23 h in case of mutant from 48 h in shake flask studies. The specific productivity of mutant strain (qp = 377.3 U/g cells/h) was several folds higher than wild strain. The specific production rate and growth coefficient revealed the hyperproducibility of extracellular lipases using mutant IIB-63NTG-7.

5.
Braz. j. microbiol ; 37(1): 78-86, Jan.-Mar. 2006. tab, graf
Article in English | LILACS | ID: lil-430986

ABSTRACT

A produção de L-DOPA a partir de tirosina pela cepa mutante de Aspergillus orizae UV-7 foi melhorada através de mutação química. Diferentes cepas foram testadas quanto a produção de L-DOPA por fermentação submersa, observando-se que a cepa denominada SI-12 foi a melhor produtora (300 mg de L-DOPA por g de células). A produção de L-DOPA pela cepa mutante a partir de diferentes fontes de carbono foi testada em diferentes fontes de nitrogênio, pH inicial e temperatura. Em pH ótimo (5,0) e temperatura ótima (30ºC), todos os açúcares foram utilizados para formação de biomassa, com um rendimento de L-DOPA de 150 mg.g-1, e produtividade volumétrica máxima e especifica de 125 mg.l.h-1 e 150 mg.g-1.h-1, respectivamente. A velocidade de formação do produto aumentou 3 vezes, sendo esse aumento o maior já relatado na literatura. Para explicar o mecanismo cinético da formação de L-DOPA e a inativação térmica da tirosinase, os parâmetros termodinâmicos foram determinados aplicando-se o modelo de Arrhenius: no caso da cepa mutante, a entalpia de ativação e entropia foram 40kj/mol e 0,076 kj/mol.K para produção de L-DOPA e 116 kj/mol and 0,590 kj/mol.K para inativação térmica, respectivamente. Os valores para formação do produto foram mais baixos e os para desativação do produto foram mais elevados que os valores correspondentes à cultura parental, indicando que a cepa mutante foi termodinamicamente mais resistente à denaturação térmica.


Subject(s)
Aspergillus oryzae , Clinical Enzyme Tests , In Vitro Techniques , Levodopa , Monophenol Monooxygenase , Mutation , Fermentation , Methods
SELECTION OF CITATIONS
SEARCH DETAIL